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We study an interacting particle system on a one-dimensional infinite lattice and 
one-dimensional lattices with a periodic boundary.  In this system, each site of 
the lattice may be either empty or occupied and initially all the lattice sites are 
empty. The evolution of the system is defined as follows: an empty site waits an 
exponential time with mean 1 and becomes occupied, and an occupied site 
becomes empty at a time which is distributed exponentially with mean Pk, 
where k is the number  of occupied neighboring sites of this site in the current 
state of the system. We show that the mean number  of the occupied sites of the 
lattice, considered as a function of time, may possess a convex part. A sufficient 
condition for this is that #0 is large and ~k, k/> 1, are small. The studied system 
has been proposed recently as a mathematical  model of certain deposition pro- 
cesses, in particular those which exhibit nucleation caused by lateral attractive 
interaction between the deposited molecules. Our  research was motivated by the 
observation that the density of deposited molecules contains a convex part, over 
some time interval, if the attractive forces are strong, while this density is a 
concave function of time if these forces are weak or absent. Our  result agrees 
with this observation. 

KEY WORDS: Interacting particle systems; modeling of initialization and 
growth of nuclei; dynamical behavior. 

1. INTRODUCTION 

Let G be an infinite one-dimensional lattice or a finite one-dimensional 
lattice with a periodic boundary. Each site of the lattice can be either 
occupied (by a particle) or empty. By cp t, t~>0, we denote a time- 
homogeneous stochastic process which evolves on the set of all configura- 
tions of empty and occupied sites of G according to the following rules. 
Assume that a configuration at which the process stays at time t ~>0 is 
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given; we then define that: (i) a site which is empty in this configuration 
will become occupied at time t + At with probability At + o(At) (this event 
is called an adsorption of a particle at the site); (ii) a site which is occupied 
and has k occupied neighbors in the given configuration will become empty 
at time t + At with probability/~k At + o(At) (this event is called a particle's 
desorption); (iii) the probability that more than one site change their states 
within time interval At is o(At); we also assume (iv) /~o~>#1>~#2 and (v) 
initially, the process start from ~g~, where ~ denotes the configuration in 
which all sites are empty. The process q0t, t ~> 0, which satisfies (i)-(v) will 
be called an adsorption-desorption process (ADP). A particular case of 
ADP for which #o = g > 0 and #k = 0, k i> 1, is called a sticking process; it 
will be denoted by ~t, t ~> 0. 

Let us denote by p(t) the probability that a particular site of G, say 
the site 0 for concreteness, is occupied in an ADP at time t. The function 
p(t), t >~ O, will be called the density function; it expresses the average den- 
sity of the occupied sites of G considered as a function of time. A condition 
on the parameters #o,-.., gs which implies that p(t) is concave for all t >/0 
is known. (3/ In this paper, we give a condition for the density function to 
possess a convex part, over some time interval. We establish (Theorem in 
Section 2) that if the size of G, that is, the number of the sites in G, exceeds 
7 (including the case when G is infinite), then the density function of a 
sticking process satisfies 

(A) (d2/dt 2) p(2(ln #)//~) > 0 for all # > / i  

(B) (d2/dt 2) p((ln #)/#) < 0 for all # >/~* 

where/7 and #* are finite constants independent of the size. Assuming there 
is only one convex part in the density function, (A) and (B) give an 
estimate on the time coordinate of the first inflection point. A computer 
simulation (2) shows that the density function of the sticking process pos- 
sesses a convex part also when G is a torus in 7/2. However, in this case 
or that of other, more complicated structures of G, our method requires the 
calculation of a huge (although finite) number of multiple integrals. 
Neither would we be able to do this by hand, nor would it be possible to 
present the results in the form of a short article. However, we hope our 
method works for these cases as well, and we intend to realize it with the 
help of symbolic calculation programs. It is appropriate to mention that a 
result similar to (A) has been reported by Granovsky eta/.  (6) for the case 
when the size of G equals 3. The method used in ref. 6 is based on solving 
a system of differential equations and is unlikely to be applicable for big 
lattices. 

It is easy to show that the sticking process is not the only repre- 
sentative of the ADPs which has a nonconcave density function. A par- 
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ticularly interesting case is when an ADP is reversible with respect to its 
invariant measure. In this case, the ADP is equivalent to a particular 
stochastic Ising model (in Section 2, we specify this equivalence; for the 
definition of the stochastic Ising model and related concepts, we refer the 
reader to ref. 10, Chapter IV). The corollary in Section 2 gives a sufficient 
condition for the density function of a reversible ADP to possess a convex 
part. Being interpreted in the terms of the stochastic Ising model, this 
corollary says: Let ~(t;/?), t ~> 0, be a stochastic Ising model on a torus in 
Z 1 which relates to the translation-invariant symmetric nearest-neighbor 
potential J1 :=/?H, J2 := / ?>0 ,  where H is connected to /? through 
2 /?(2-  H) = C for some constant C ~> In/i. Assume that in this process, the 
flip rate from - 1 to + 1 equals 1 and the process starts from the configura- 
tion "all minuses." Then the magnetization of this process, considered as a 
function of time, possesses a convex part if fl is sufficiently large. 

The following qualitative explanation of a possible nonconcave shape 
of the density function has been suggested by Bernard Ycart (personal 
communications). For  the case of the sticking process, a particle which has 
at least one neighboring particle on G will be stuck, i.e., unable to leave G. 
Recall that the lattice sites are empty initially. Thus, until the first event 
when any two particles get stuck, the sticking process behaves like a birth- 
and-death process whose rates of birth and death are 1 and #o -- #, respec- 
tively, and which starts from the configuration ~ .  Thus, for small t, p(t) 
would be close to the curve { 1 - e x p [ - ( 1  +/~)t]}/(1 +#) ,  which is the 
density function of this birth-and-death process. On the other hand, for 
large t, there are very few empty sites of the lattice, so that an adsorbing 
particle is unlikely to be isolated on G and therefore will never be desorbed. 
Thus, when t is large, p(t) would be close to the curve 1 -  e x p ( - t ) ,  that 
is, the density of the pure birth process whose birth rate is 1. If/~ is large, 
so is the gap between these two curves. Consequently, the density function 
of the sticking process will be unable to pass from one curve to another 
"smoothly," but rather will have to "accelerate" at a certain stage that 
would be expressed in breaking the concavity. The idea of comparing ~b t 
with a birth-and-death process is the basis of the proof of (A) and (B) and, 
with some additional technique, provides a comprehensive explanation of 
the nonconcavity to be presented at the end of the next section. 

The adsorption-desorption process has been recently suggested (14' 13) 
as a model of a deposition process called underpotential deposition (UPD). 
Actually, ADP was proposed to describe UPD accounting for the lateral 
interaction between the deposited ions. Ref. 9 reviews the state of 
knowledge of UPD up to 1976, and the nucleation phenomenon in U P D  
which indicates the presence of lateral attractive forces between the 
deposited ions is discussed, e.g., in ref. 8. Refs. 11, 12, and 5 contain a 
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mathematical investigation of this phenomenon. We would like to remark 
that the mathematical models of initialization and growth of nuclei 
proposed in these papers can be regarded, to a certain extent, as particular 
cases of ADP. 

Our interest in the nonconcave behavior of the density function of the 
ADP was motivated by ref. 6, which reported that for a certain deposition 
process, the analogue of the density function may possess a convex part, 
over some time interval. The results presented in ref. 6 were obtained by 
processing the experimental data provided by Hansen and Wallace (7~ 
regarding the determination of the dependence of the surface tension of 
various aqueous solutions on concentration and time. For the process of 
creation of the solution-air interface, which is the process studied in ref. 7, 
the analogue of the density function is called the excess; it is usually 
denoted by F; let us also introduce the surface coverage parameter 
0eq := /'(O(2))//'max, where F(oo) corresponds to the value of the excess in 
the equilibrium state for a given concentration of surfactant, and Fmax is 
the maximum in the isotherm of F(oo) versus concentration (see ref. 1 for 
background). After the transformation of the original tension-versus-time 
data to data which relate the excess to time, the following difference in the 
behavior of the aqueous solutions of pentanoic and octanoic acids was 
observed. For pentanoic acid, F(t) is a concave function of time for all 
values of 0eq. On the other hand, for octanoic acid, if the value of 0eq is 
close to one, then the excess, considered as a function of time, will possess 
a convex part. It is known that octanoic acid molecules, being longer than 
those of pentanoic acid, interact more strongly because the strength of 
intermolecular forces between straight-chain carboxylic molecules increase 
with chain length. In the studied process, the existence of lateral interaction 
is substantiated by the violation of the Langmuir law observed for octanoic 
acid (see ref. 1 for the derivation of the Langmuir isotherm for a lattice 
gas). Thus, the difference in the dynamics of the excess for octanoic and 
pentanoic acids may be explained by lateral interaction between molecules 
in the solution-air interface. The result presented in this paper agrees with 
this explanation. 

2. D E F I N I T I O N S  A N D  R E S U L T S  

The adsorption-desorption process (ADP) investigated in this paper is 
a particular interacting particle system. Ref. 10 is the best reference for the 
theory of IPS; the construction of ADP presented below follows this book. 

Throughout this section, G denotes a one-dimensional infinite lattice 
(usually designated by Z 1 in the mathematical literature) or a one-dimen- 
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sional finite lattice with a periodic boundary (called also a torus in ~1). We 
will use the same symbol G to denote the set of all sites of the lattice G. 

A function r/: G --+ {0; 1 } is called a configuration. The set of all con- 
figurations on a lattice G is denoted by X :---" {0; 1} G. A site x e  G is called 
occupied in a configuration r / e X  if r /(x)= 1 and empty if r /(x)= 0. For  
x ~ G and r/e X, we define a new configuration r/x, called the configuration 
r/flipped at x, in the following way: 

r /x(y)= i f  - r / ( x )  if y = x  for all yEG 
[r/(y) otherwise 

Let U(X) denote the set of continuous functions acting from X to 
and let L(X)c_U(X) be the set of cylinder functions. Define a linear 
operator ~r L(X) ~ cg(X) by virtue of the following formula: 

(fff)(r/) := ~ c(x, r/)[f(r/x)-f(r/)], 
x ~ G  

r/~x (1) 

where 

2-=1 for r / (x )=0  
c(x,r/):= for all x e G ,  r /6X (2) 

#k for r / (x)= 1 

for k = k(x, r/) being the number of occupied neighbor sites of the site x in 
the configuration r/. Throughout,  we will consider exclusively the case in 
which 

0~<tti~<#i_l < oc, i = 1 , 2  (3) 

It is known that under the conditions (2) and (3) the operator N uniquely 
determines a strongly continuous Markov semigroup on U(X) which 
will be denoted by {S(t), t~>0}. The unique Markov process which 
corresponds to this semigroup will be called an adsorption desorption 
process and designated by (fi,, t i> 0; ADP will be the abbreviation for this 
process. X is the state space of an ADP. In this paper, we will be exclusively 
interested in the case when an ADP starts from the configuration ~ (all 
sites empty). The probability distribution of (fit, t ~> 0, will be designated 
by (Pr, the corresponding mathematical expectation operator will be 
designated by ~:, so that for any f E  U(X), the following relationship holds: 

(S(t) f )( fJ)  = ~[f((fi,)], Vt ~> 0 (4) 

We will loosely call ~f the generator of (fit, t ~> 0. The function c(- , . )  
from (2) is called theflip rate. We will call 2 the adsorption rate at an empty 
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site and #k the desorption rate from an occupied site surrounded by k 
occupied neighbors. 

A particular case of ADP which is specified by the following condition 
imposed on the desorption rate, 

# o = # > 0  and # i = 0  for all i>~l (5) 

will be called the sticking process and denoted by ~b,, t ~> 0, throughout. The 
quantity # will be called the desorption rate of an isolated particle in the 
sticking process. For  this process, we say that a particle is stuck on G if it 
has at least one particle as its neighbor, since in this case, the particle is 
unable to leave G. 

Remark. We set 2 =  1 in (2) since multiplication of the flip rate 
function by a constant is equivalent to rescaling the time. Nevertheless, the 
symbol 2 remains in our calculations since it helps to retain the dimension 
of the quantities. 

The density function (also called particle density function), which is the 
subject of our research, is designated by p(t), t ~ O, and defined by 

p(t) := FFElo(qh)], t ~> 0 (6) 

where Io 6 L(X) indicates the presence of a particle at the site 0 E G, i.e., 
Io(t/) := t/(0) for all t /s  X. 

Regarding the shape of p(t), t>>.O, it is known that this function is 
concave when t is very small or very large. In fact, we recall that 

d 2 
~5  p(0) = - 2(2 + #o) < 0, (7) 

so that p(t) is concave near the origin. [One may consult ref. 3, Corollary 
1, for the proof of (7) or derive it directly from (15) by substituting ~ for 
t/ and using (14).] We also recall that p(t) is an increasing function of t 
since an ADP is an attractive spin system and the function Io is monotone 
on X [see Theorem 2.3(a) in ref. 10, Chapter III].  Since p(t)~< 1, Vt, one 
concludes that this function contains concave portions when t is large. 

Assertion (i) of the following theorem gives a sufficient condition for 
the density function of sticking process to possess a convex portion. 

T h e o r e m .  Let G be an infinite one-dimensional lattice or a finite 
one-dimensional lattice with a periodic boundary which contains more 
than seven sites. Let ~bt, t ~> 0, be a sticking process on G with the adsorp- 
tion rate at an empty site being equal to 2 = 1 and the desorption rate from 
an isolated occupied site equal to # > 0. Suppose that ~b o = ~ .  Then: 
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(i) There is / i  < oc such that for all #/>/i, 

> 0  

(ii) There is #* < ~ such that for all # ~> #*, 

dr--- 5 p < 0 

We would like to remark that assertion (ii) comes as a side result in 
the course of the proof of (i). However, (i) and (ii) together give an 
estimate on the time coordinate of the first inflection point of the density 
function, provided this function contains only one convex part. The latter 
fact is not proven in this paper. At the current stage of our knowledge we 
rely on our computer simulation results, which show that the density 
function of the sticking process is either concave or consists of three parts, 
the first and the last being concave and the intermediate one convex. 

The usual approach based on the Trot ter-Kurtz  approximation 
theorem (Theorem 2.12 in ref. 10, Chapter I) allows one to derive from the 
theorem stated above that a convex part appears in the density function of 
an ADP if #0 is large and #k, k ~> 1, are small enough. We demonstrate this 
approach in the proof of the following corollary. The ADPs to which this 
corollary applies are reversible with respect to their invariant measures. 

The set of reversible ADPs can be easily characterized. In fact, observe 
that if for some k, /~k = 0, then on account of (3), the configuration ~ (all 
sites occupied) is a trap. Therefore, if an ADP is reversible, then its flip rate 
is strictly positive. Change now 0 to - 1  for designating an empty site in 
the definition of the ADP. The obtained process will then be a stochastic 
Ising model due to Theorem 2.13 in Chapter IV of ref. 10. Since the flip 
rate of an ADP is translation invariant and symmetric and depends on the 
nearest neighbors, then the potential to which the obtained stochastic Ising 
model relates should also possess these properties. Denote this potential by 
J1, J2 and express it in the usual way: J1 :=/~H, J2 =/~- By definition, there 
are infinitely many stochastic Ising models relative to a given potential. 
A particular feature of the one that is obtained from an ADP is that the 
flip rate from - 1 to + 1 equals 1. The condition of detailed balance then 
gives that the flip rate from + 1 to - 1  at a site which is surrounded by k 
pluses equals 

/~k = e x p { 4 J 2 -  2J1} e x p { - 4 J 2 k } ,  k = 0 ,  1, 2 (8) 

The condition (8) is necessary and sufficient for an ADP to be reversible. 
Notice that (3) and (8) imply tha t /~>0 .  
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Corollary. Let C be a positive constant greater than In ft. Assume 
that the value of a real number H depends on a positive real/~ through the 
relationship 

2//(2 - H) = C (9) 

Let G be a torus in 7/1. Denote by ~0(t; fl), t~>0, the ADP on G whose 
desorption rate has the form (8), where J~ :=/3H, J2 :=/~ > 0. Then there 
is a f l<  oe such that for all /~/>/~, the density function of the process 
~o(t; fl), t >/0, possesses a convex part over some time interval. The value of 
fl may depend on C and the size of G. 

The following lemma will be used in the proof of the theorem. It gives 
the exact expression of the second derivative of the density function of the 
sticking process. The proof of the lemma itself is completely technical. 

Lemma. Suppose the assumptions of the theorem above hold; then 

d 2 
dt-- 5 p(t) = (#2 nt - 32#) Pr {q~, e ~.o} -- (#2 + 22) Pr {~b, e Y~oo} 

-22(pr{~b, e ~o.  } + Pr {~bt e X.oo } + Pr {~b, e X.o.}), t~>0 (10) 

where 

2~roo := {t/~ Y': t / ( - 1 ) =  r/(0)= t/(1) = 0} 

Y'o.o := {r/e Y': ~/(- 1) = 1 - ~(0) = t/(1) = 0} 

Y~o. := {~/e X: t / ( -  1) = ~/(0) = 1 - t/(1) = 0} 

~oo :-- { t / e X : l - r / ( - 1 ) = r / ( 0 ) = r / ( 1 ) = 0 }  

3f.o. := {t/s~": l - r / ( -  1) = q(O) = l - - r / (1)  =0}  

Let us demonstrate roughly the idea and the method of the proof of 
the theorem. Consider a birth-and-death process which starts from ~ and 
whose rates of birth and death are 2- -1  and #, respectively. This process 
will be denoted by of ,  t >/0, throughout. For  this process 

2 {1 - - e x p [ - - ( 2  + # ) t ]  }, Pt := Pr{Ix(C~ = 1 } = t~>O (11) 

for all xeG,  where IxeL(Ys is defined by Ix(t/) := ~/(x), t /e 5~'. [(11) is the 
solution for p ' t = 2 ( 1 - - p , ) - # p ,  with the initial condition p o = 0 . ]  Since 
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particles do not interact in co~, t>~ 0, the right-hand side of (10) acquires 
the following form, after the substitution of co for {b: 

~2 3 2 (~2+3)~#--222)p2(1--pt)--(#2+z )pt--2pt(1--pt) 2 (12) 

Now we take t =  t ( # )=  (c in #)/(2 +/~) for some positive constant c and 
substitute p,(~ from (11) in (12). Elementary calculations show that the 
obtained expression approaches a positive value as # ~ oo when c is not 
less than 1, while it is negative for all values of # if c is sufficiently small. 
Consider now the sticking process ~b,, t >/0, whose desorption rate of an 
isolated particle equals #. For  this process, we observe that the number of 
the particles which have visited a lattice site before time t(/~) and the mean 
lifetime of a particle which equals 1//z are decreasing when # ~ oo (by the 
mean lifetime we mean the mean time which a particle has spent on G 
before the desorption on the condition that it has not stuck on G). Thus, 
we conclude that the probability for particles to stick before time t(#) in 
this sticking process is also decreasing in/z. This suggests that the distribu- 
tions of ~b~(u~ and cot(~/are close one to another for large values of kt. There- 
fore, the conclusion is that the difference between the values of (10) and 
(12) at t(~) goes to zero when # ~ oo and one expects that (10) is positive 
at time t(#) for an appropriately chosen c. The birth-and-death process co,, 
t ~> 0, not only gives a correct choice for the function tot), but it is also 
essentially exploited in the proof of the theorem for estimating the 
probabilities involved in (10). 

Let us give two more remarks regarding the existence of an inflection 
point in the density function of the sticking process. 

First, we recall (see ref. 3 for the proof) that the density function of an 
ADP on an arbitrary lattice G is concave for all t >~ 0 provided 

m a x  ([Ak_l--]Ak)~S--l(}~Ar#s) (13) 
k=l , . . . , s  

where s is the number of neighbors of each site of the lattice G. For a stick- 
ing process on a one-dimensional lattice, s =  2 and the above inequality 
says # ~< 2/2, which explains why an inflection point cannot appear if # is 
small. 

Second, (11) suggests that the larger is the value of #, the faster does 
the birth-and-death process reach its equilibrium state. Expressing Poo from 
(11), one easily checks that (12) is positive for the equilibrium state. There- 
fore, the value of t at which (12) becomes positive decreases when /~ 
increases. Now, if one believes that co and (b behave in a similar way when 
time is small and # is large, then the above reasoning explains why the time 
coordinate of the first inflection point in the density function of the sticking 
process moves toward zero when p increases. 
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3. P R O O F S  

Proof of Lemma. Applying the Hille-Yosida theorem 
Theorem 2.9, Chapter I) twice to the cylinder function Io, we get 

d 2 
dT S(t)I~ = S(t)((#2I~ t >1 0 

(ref. 10, 

(14) 

By (1), 

(~2Io)(n) = ~ c(x. ~)[~r ~r 
x ~ G  

= ~ ~ {c(x, tl) c(y, qx)EIo(tlxy )-Io(t/x)] 
x ~ G  y ~ G  

-c(x, q)c(y, t/)[Io(r/y ) - I o ( q ) ]  } 

where the symbol t/u ~ denotes the configuration q after it has been 
successively flipped at the sites u, v e G, which need not be distinct. Observe 
that for the expressions surrounded by the square brackets to be different 
from 0, it is necessary that y = 0. Thus, the y summation reduces to y = 0. 
Next, we note that for each x such that x r  { - 1 , 0 ,  1}, it holds that 
c(x, q) c(O, tl) = c(x, tl) c(O, tl~ ) and [Io(~/xO)-Io(t/x)] = [Io(t/o)-Io(t/)]. 
Consequently, for such x, the expression in the curly brackets is equal to 
zero. Therefore, 

(~r = c(x. ,){c(0. ~x)Uo(~xo)- Io(~x)] 
x ~  { 1 ,0 ,1} 

- c(0, q)[Io(t /o)  - Io(q) ]  } (15) 

Let us divide f into 32 subsets by defining that two configurations 
belong to the same subset iff they coincide on the sites - 2 ,  - 1 ,  0, 1, 2. 
Denote these subsets by 5f 1 ..... f32- Since c(z, ~) is completely characterized 
by the values of ~ on the neighbors of z, we derive from (15) that ff2Io(~/) 
depends exclusively on t/(k) for k e  [ - 2 ;  2], consequently, ~ 2 I  0 equals a 
constant ck on each fk ,  k =  1,..., 32. After calculating the constants ck, 
k =  1 ..... 32, from (15), one finds the following expression for ffZlo(t/): 

(c~2io)(r/) = (#2 + 32#)  I~o.o(t/) -- (#2 + Z 2) I~;oo(q) 

-- 22 [I~.oo.(t/) + I~.oo(t/) + Ix.o.(q) ] (16) 

where Ic is the indicator function of COY'. Now, (10) follows from (16) 
due to (4), (6), and (14). This completes the proof. | 
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Proo f  o f  Theorem.  We start the proof with an alternative construc- 
tion of the sticking process ~b,, t ~> 0. This construction uses the concepts of 
graphical representation for interacting particle systems. 

Let the sites of the lattice under consideration be drawn on a line of 
real numbers ~. At each site, we raise a time axis which is perpendicular 
to ~ and their intersection point corresponds to time t = 0. To each site, we 
arrange two independent Poisson point processes (PPP)  which are also 
independent of the processes at the other sites. Their intensities are 2 and 
#, respectively (recall that 2 = 1 due to the remark in Section 2). On each 
time axis, the first point of the first PPP  is marked/7 (for birth or, equiv- 
alently, adsorption); the first point of the second PPP  following the 
marked point is marked 5 (for death or, equivalently, desorption); then the 
first point of the first PPP  following this 5 point is marked fl, etc. Finally, 
the segments of the axis between the successive /?'s and 5's are painted 
black. 

The obtained space-time diagram represents a realization of a birth- 
and-death process whose birth and death rates are equal to 2 and ~, 
respectively, and which starts on an entirely empty lattice. A black segment 
means that the corresponding site is occupied by a particle; the particle's 
adsorption time is the beginning of the segment, and the desorption time 
is the end. The set of all space-time diagrams of the birth-and-death process 
is denoted by f2. The measure on the distribution of fl and fi points on each 
time axis is defined naturally by the considered Poisson processes. The set 
f2 is then endowed with the product measure. 

Each diagram may be uniquely modified to become a realization of 
the sticking process with the parameters 2 and/~. The modification rule is 
as follows. At each site of the lattice, we kill a particle at its desorption time 
if there are no particles at the neighboring sites; otherwise, the particle 
stays at the site forever and all the following fl and 6 points at this site are 
discarded. Let ~ denote the space of modified diagrams with the measure 
induced from the measure defined on g2. There is a difficulty that arises in 
this algorithm, namely, there are co's such that in order to decide whether 
to kill a particle at time t, we need to know the history of the whole 
lattice before t. This may cause a problem if the lattice is infinite. We will 
overcome this difficulty with the help of the sets A ,.m introduced below. 
Actually, the measure of these co's is zero. 

Let co e ~2; by co t we denote the section of this diagram at time t, and 
co(k) stands for the section at the site k ~ G; the symbols ~b t and ~b(k) have 
the corresponding meaning for ~b e qs. 

Remark. Recall that according to the definitions given in Section 2, 
the symbol Pr  designates the probability distribution of the process ~b,, 

822/70/5-6-11 
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t ~> 0. No confusion will arise if we use the same symbol Pr to designate the 
probability distribution of the process co, t ~> 0, from which ~bt, t/> 0, is 
constructed. 

We will need the following auxiliary functions: 

fl,(co(k)) := the number of fl-points in co(k) up to time t 

fl,(~(k)) := the number of/?-points in ~b(k) up to time t 

From here on, let T be a fixed time whose value will be specified later. 
For  n, m s Z  +, denote by A . . . .  = A  n,m(T) the set of all ~beq~ such 

that: 

(i) f lT (~ ( - -n ) )= f l r (~ (m) )=O.  

(ii) /?r(~,b(k))> 1 for all k e ( - n ; m ) \ { O } .  

Remark. Assume Y c ~ is defined by giving the states of the sites 
- n ,  - n  + 1,..., m at time T and the number of particles which have visited 
each of these sites by time T. We remark that if the inclusion Y c  A . . . .  
holds, then Pr{ Y} is easily evaluated. In fact, denote by W c  s the set of 
all co ~ f2 for which the corresponding modified realization ~b belongs to Y. 
Then, to determine whether an co ~ f2 belongs to W, one needs only to 
know {co+(k), - n  ~< k ~< m, 0 ~< s ~< T} because everything that "happens" to 
co outside the interval I - n ,  m] can be neglected since the birth-free sites 
- n  and m protect the interior of the interval from influence from outside. 
Consequently, Pr{W} can be expressed as a multiple integral. In what 
follows, T is small; consequently, the integral's value is easily evaluated. 
Since Pr{W} equals Pr{Y}, this solves the problem of evaluating the 
latter. Below, we demonstrate this calculation for Y= B 7 f rom (18). 

We also remark that (ii) provides that the sets A . . . .  n, m E Z +, are 
mutually nonintersecting. 

In the following exposition, the symbol k} is used to retain the history 
of a site k until time T in the sticking process. More precisely, the number 
k stands for a site of the considered lattice; if the value of the subscript is 
j, it means that exactly j particles have adsorbed at this site until time T; 
if the site is empty (occupied) at time T, we assign the value 0 (respectively, 
1) to the superscript. We use an asterisk for the superscript if we allow the 
site to be either empty or occupied (at time T); and use an asterisk for the 
subscript if the number of particles which have adsorbed before time T is 
not important to us. Once more, notice that the symbol kj refers to the 
sticking process. 

For  example, the set B7 defined in (18) below is interpreted as the set 
of all realizations of the sticking process for which the sites - 2 and 1 have 
had no adsorptions before T, the site 0 has been visited by two particles 
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and  the second one occupies this site at  t ime T, and  the site - 1  has been 

visited by one par t ic le  which has left it before T. Not ice  tha t  by specifying 
the states of the sites at  t ime T, we in pa r t i cu la r  state tha t  the par t ic les  at  
the sites - 1  and 0 have not  s tuck before T. Not ice  also that ,  by the 
cons t ruc t ion ,  B 7 c A_2,1. Consequent ly ,  B 7 .may be expressed as a subset  
of f2 in the way presented  in Fig. 1. Accord ing  to this presenta t ion ,  its 
p robab i l i t y  is given by  the fol lowing mul t ip le  integral :  

;/ ;o -x Pr{BT} = 2e Xx dx #e ~y dy 2e -~" du #e ~z dz 
' 1 0  T - - x - -  y - - u  

x w J0 #e-~v dv 2e-  Xq dq 
+ y  T - - w  v 

+ 2e-;"~dw #e "Vdv 2e )'qdq (17) 
T w - -  v 

TIME 

T 

0 T . -3 -2 

TIME 

T 

o 
. .  3 -2 

14 iz 
q u 

Y 

Iv 
• 

w 

-I O 
(G) 

0~< x,y,u,z ~oo 

0 <~ w,v,q ~<co 

x * y + u < T  
N N \ \  
[-, \ \ \  X * y * U + Z  > T  
r ~ \ \ \  
r ~ \ \ \  W + V < X  
N \ N \ b . \ N  
b , \ \ \ b , \ ' ~  w *  v + q > T  

2 3 . .  

v u 

x 

o 

(b) 

2 3 . . .  

O ~  x,y,u,z d c o  

O<w,v ,q  d co 

x * y * u < T  

x * y * u  *z > T  

w * v , q > T  

W > X t y  

W+V < x * y * u  

Z' 

Fig. 1. A realization ~b belongs to B 7 iffits adsorption and desorption events at the sites -2 ,  
- 1 ,  0, and 1 occurr as shown in (a) or (b) for appropriate values of x, y, z, u, w, v, and q 
and independently of everything that happens at the other sites of the lattice. 
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We have prepared everything we need to proceed to the proof of the 
theorem in the way outlined in the previous section after formulation of 
the lemma. 

We define A~=A~(T), B~=Bi(T)cqs, i = 1  ..... 12, and C~=C~(T), 
D~ = D~(T) c q~, i = 1,..., 4, in the following manner: 

A I : =  { o o o - lo, 0o, lo}, 

A~ := { - 1 ~ 0 ~ 10}, 

A 3 :=  {--1~ 0 ~ 1 ~ 1 7 6  

A4 := {__20 ' o o -1,,0o, 1~ 

As := {-1~ 0 ~ 1~ 

A6 := { -  1~ 0~ 1~ 2~ 

A 7 : = { - 2  ~ 1 7 6  a~ 1~ 

A 8 := { - 1  o ' 0 ~ 1 ~ 2~ 

A9 := {_20  ' 0 o o --12,00, 10}, 

A m := { - 1 0  , 00 , 1 ~ 2",  3~ 

An := { - 3  ~ -21' ,  -l~176 10}, 
o o 1 o ,2o} ,  A12 :=  { - 2 o  0, - 1 1 , 0  o, 

and 

B ,  : =  - 1 ~  

B ~  : =  - -  l o  ~  

B 3 :=  - -10 ,  

9 4 :=  - 2  ~ 

B 5 := - 1  ~ 

B 6 := - 1 0  ~ 

B 7 :=  - - 2  0, 

B, := - 1  ~ 

B9 := - 2  ~ 

Blo := - 1 ~ 

B,I  :=  -3o0, 

B,2 := - 2  ~ 

c ,  := {-111,o~ 10}, 

C 2 : = { - 1 ~ , 0  ~ 1~ 

c ,  := { - ~ ,  o ~ lo~ 

C 4 : = ~ ,  

0~,1~} c A _ , , ,  

0~,1~} c A _ , , ,  

01,17,20} cA_l,z 
0 1 

- - 1 1 , 0 1 ,  1~} c A  2,1 

0~,10} cA_ , ,~  

0~, 1~, 2~} cA_1,2  
0 1 -- 11,02,1~} cA_2,1 

0{, 1 ~ 20} c A _ l , 2  

- 1 L o l ,  l~} = A = , ~  

0l, 1~, 2~, 3~} cA_,,3 

- 2 ~ , - 1 ~ , 0 1 , 1 ~ }  cA_3, ,  
0 0 

- - 1 ~ , 0 ~ ,  11 ,2o}  c A  2, 2 

(lS) 

D1 := { - 1 0 , 0 ~  1~,} 

D 2 : = { - l ~  ~ 1~} 

D3 : = ~  
D 4 : = { - 1 0 , 0  ~ 11,} 

Due to the definitions (18) and (19), it holds that 

AinAj=g~3, BimBj=~, Cic~Cj=~ 

DinDj=~,  i # j  

and also the following implications are valid: 
12 12 

i= l  i--1 
4 4 

i=I  i=1 

(19) 

(20) 

(21) 
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The choice of the events A~ and B, presented in (18) is subjected to the 
needs of the proof of (i). However, for the sake of simplicity of the exposi- 
tion, we first derive the assertion (ii). To do it, we need the probabilities 
of Ai, B~, C~, D~, i-- 1 ..... 4. Using the approach demonstrated above for 
Pr{B7} [see (17) and the preceding argument], we obtain the following 
results: 

Pr{A1} = 

Pr{B1} = 

P r { & }  = 

P r { B 2 }  = 

e 32T 

15' - 32 T ~  

P r { C , } = P r { D ~ } =  ( 1 - e  - (~-a/ r )  

e)T pr{A3} =e2T Pr{A4} 
e 7 7 2  l * - 2  (22) 

e ~'r Pr{B3} = e  ~r Pr{B4} = Pr{C2} = Pr{C3} 

e - 3~.r) 2/~ ( 
Pr{D2} = Pr{D4} - -(~-- ~-j-s . T(1 - e  -(u-~)T) 

2 ( 1 - e  ~" ~)T),] 

Taking T =  In/~/(# - 2) and 2 = 1 in the above expressions and expanding 
the exponent and the function (/~- 2) -1 in Taylor series about the origin, 
we get 

4 

~, {(/z 2+ 32#) P r { B i } -  (2#+22 ) Pr{Ai}-22(pr{C~} + Pr{D~})} 
i = 1  

= - / ~ +  11 in # +  O(1) (23) 

where the sign O means the asymptotics with respect to #-+ oo. 
Now notice that 

4 2 

q~r~ ~.o and q5 (s ~) B, ~ ~ flr(O(k)) ~> 3 (24) 
i = 1  k =  2 

This implication follows from the definition (18). In particular, it becomes 
clear, if one recalls that the sets A ..... n, m s Z +, are nonintersecting and 
each Bi belongs to one of these sets as indicated in the first four lines of 
(18). Consequently, 

{ +} { } Pr ~b:~bre~.o,~br B i ~<Pr (o: ~ fir(co(k)) >/3 
i = 1  k =  - - 2  

=e_S~ r ~ (52T)' {ln 3/l'~ (25) 
,~3 l! - O ( T 3 ) = O  \ ]23 j 
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Applying (23) and (25) to (10) of the lemma and using (21) and (20), we 
obtain that d2p(T)/dt  2 < - # + O(ln #) for T =  (In #)/(/~ - 2) as /~ -~ o% 
which demonstrates (ii) of the theorem. 

Assertion (i) of the theorem was proven in the following way. First, for 
each Ai, Bi, i =  5 ..... 12, we expressed its probability by a (17)-like integral 
using the approach demonstrated above for B 7. Then we calculated explic- 
itly the value of this integral. Afterward, we substituted (21n #)/(/z - 2) 
for T and expanded the obtained result in the form presented below. 
Notice, once more, that in the following formulas, T is just an abbreviation 
of (2 In g) / ( /~-2)  and 2 = 1 according to the remark from the previous 
section. We have 

Pr{As} = e ~'r Pr{As} = e ;'r Pr{Ag} 

22/~2e-3Xr E{ T2 2T 
= ( ~ _  ,~)2 ~_----~ q 

Pr{B5} = e ; r  Pr{B8} = e ~r Pr{B9} 

- -  ( ~  __ ,~)3 ~ _ _ ~  "4- - -  

22]A:2 e --42T E 
Pr{A6} = Pr{A7} (/~_ 2)2 T2 

}'3]22e--4~T I 
Pr{B6} = Pr{BT} - ( # _  2)3 T2 

Pr{Aao} = Pr{All} 

22#2e--52T _ ( 4  _ _  

P r { B l o }  = 

[Pr{A12 } - 

Pr{B12 } - 

(~_ ~)~ + o 

( ~  _ , l)~ + o 

4T 6 
k - -  - ;~ ( u -  2)  2 

6T 13 

( 6 (1;] 
+ . (~_- i  ~ ~ ( ~ - ~ )  +o 

Pr{Bll} 

# - -2  

+ _--~)~ ~ ( ~ - ~  +o 

(--~-~ L ~ - ~  (~-~t ~ + ~  _ 7  

( ~ - ~  L ~ - ~  (~-a ~ +  ; 
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It is easy to see from the above presentation that 

A~ := (#2 + 32#) Pr{Bi} - (2# + 22) Pr{ai}  

2 
= ( # 2 + 3 2 # ) P r { B i }  - - ( # 2 = 2 2  )Pr{A~} 

(#-2) 

23#2e-~"tT F KiTI~2 Li#2 ] 
: -t - - + o ( 1 )  i = 5  ..... 12 (26) 

L u - *  ( # - 2 )  2 J' 

where 7 is either 3, 4, or 5 and K~, L~ are positive constants. We note that 
the form of the leading term in the expansion of A~ given by the rightmost 
expression of (26) is determined by the coefficient of the second term in the 
expansions for the probabilities of Ai and B~, i = 5 ..... 12. This is due to the 
fact that the ratio between the coefficients of T 2 in Pr{Ai} and Pr{B~} is 
( # -  2)/2 for all i =  5 ..... 12. Actually, we intended to achieve this effect by 
the construction (18). 

Next, using the Taylor expansion for e - 7 ~  and ( # - 2 )  1, we obtain 

12 

[-(#2 _~ 32#) Pr{B~} -- ()t# + 22) Pr{A~}] = -- 11T+ 31/# + o(1/#) 
i = 5  

On the other hand, under T =  (2 In # ) / ( # - 2 )  and 2 = 1, the relationships 
(22) yield 

4 

{(~2 _~ 32/~) Pr{Bf} -- (2/~ + 22) Pr{Ai} - 22(Pr{ C~} + Pr{D~} )} 
i = l  

= 11 T -  14/# + o(1/#) 

So, our conclusion is that 

12 4 

Z { ( # 2 + 3 2 # ) P r { B i } _ ( 2 # + ) 2 ) P r { A i } ) _  Z ()t2(Pr{C~} +pr{D~})} 
i = l  i = 1  

= 17/# + o(1/#) (27) 

The last stage of the proof is to show that the difference between the 
left-hand side of (27) and the right-hand side of (10) is o(1/#). 

First, notice that if ~bre~oo and ~bq~U]21Ai, then 523= _3/?r(~b(k)) 
~> 3. This implication is obtained exactly as (24), and, consequently, in the 
way analogous to that used to derive (25) from (24), we get that 

, =1  k = 3  k ! -  O ( T 3 )  ( 2 8 )  
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Next, we are going to estimate the difference between Pr{~bre~o. } 
and Pr{04_l  Di}. To do this we have to distinguish between two cases, 
one when a particle that occupies the site 1 at time T is isolated at this 
time, and the other when it belongs to a cluster of particles which extends 
to the right of the site 1 at time T. Formally speaking, r ) is 0 for the 
first case and 1 for the second one. Regarding the first case, we notice that 
if ~ b r ~ o . ,  q~r(2) =0,  and ~br U4=l Di, then either ~b~ { - 1  ~ 0o ~ 11, 2~ 
or Z l =  l fr(~b(k))~> 3. The probabilities of these two alternatives are 
estimated as follows: 

and 

Pr{~b:~be{- l~  ~ 11,2O*} 

~< Pr{co: f i r ( c o ( - 1 ) ) =  1} Dr{co: f i r (co(l))= 1, coT(l)= 1} 

= o ( r / ( # -  ~)) 

Pr 
{1 } {1  } 

~b: ~ fv(~b(k))/> 3 ~< Pr co: ~2 fir(c~ 3 = O ( T  3) 
k =  - - 1  k =  - -1  

For the second case to be realized, at least one adsorption should occur at 
each of the sites 1 and 2. Discounting everything that happens outside of 
these sites, we obtain that the probability of this event is O(T2). 

Summarizing the above reasoning, we get the following estimate: 

i = 1  

and, analogously, 

Pr{~b:~bT~X.oo}-Pr Ci = O ( T  2) (30) 
i 1 

Finally, a sufficiently good estimate of Pr{~b: ~breSf.o. } is provided by 
the following inequality: 

Pr{~b: ~br ~ ~.o. } 

~<Pr{co:flr(co(-1))>~l and flr(co(1))>~l}=O(T 2) (31) 
Now the relationships (21) and (20) and the estimates (28)-(31) determine 
that the difference between the right-hand side of (10) and the left-hand 
side of (27) is o(1/#). Thus, by the lemma's assertion and Eq. (27), it holds 
that 

(d2) p(T)>>.17/#+o(1/#) for T =  21n # / ( # -  2) when s ~ o o  (32) 
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which proves (i) of the theorem. Regarding the lattice size, notice that we 
have used in the definition (18) the fact that there are at least three sites 
on the left and three on the right of the site 0. This is reflected in the 
theorem's assumptions. | 

Proof  o f  Corollary. Let S~(t), t >~ 0, and (48 be, respectively, the semi- 
group and the generator of the process ~0(t;/~), t~> 0. Reasoning as in the 
proof of the lemma, it is easy to show that the function N~Io is expressed 
by the right-hand side of (15) and, consequently, this function acquires a 
constant value on each fk ,  k = 1 ..... 32. The subsets ~r 1 ..... ~32 have been 
introduced in the proof of the lemma. Denote by ~1 ..... 0~16 those of them 
which are not contained in any one of the sets ~oo, ~.o, f.oo, Woo., .~Y.o.. 
A straightforward calculation gives that 

( ~ I 0 ) ( / 7 )  = (]A 2 -[- 3~]A - -  22#1) I~o.o(t/) - (#2 + 22) I.f,o~(~/) 

_ ( , ;2 + )~kt 1) [ iy.oo,(r /)  + / y . , o o ( q ) ]  

16 
- (22 + 2#2) I~.o.(q) + ~ akI~k(q ) (33) 

k--1  

where 

ak=ak1)~y1+ak22#2+ak3#1#2 ,  akieN, i = 1 , 2 , 3 ,  k = l  ..... 16 (34) 

Let now ~bt, t >7 0, be the sticking process on G whose desorption rate 
of an isolated particle equals #o = exp{23(2-  H)}. Denote by S(t), t >>. O, 
and aj, respectively, the semigroup and the generator of this process. By 
(9), (8), and the choice of C, #o~>/~; thus, due to (i) of the theorem 
formulated in Section 2, the density function of this process possesses a 
convex part. Moreover, the inequality (32) from the proof of this theorem 
gives that 

S ( T ) ( ~ 2 I o ) ( ~ ) > 1 7 / # o ,  where T =  (2 In #o)/(#0-  1 ) (35) 

Recall that ~q2I o is given by (16); thus, comparing the latter with (33), 
we obtain that 

(ff~Io)(r/) = (~210)(t/)+ g(q), Vq e Y" (36) 

for a certain gE C(W) which satisfies, on account of (34), m a x , ~ .  Ig(t/)] ~< 
c'p1 for an appropriate positive c*. The latter inequality and (36) yield 

ISa(t)(~r - Sa( t ) (~2Io)(~) l  <~ c*#l ,  Vt >>. 0 (37) 



1252 Belitsky 

Now observe that 

#i --> O, i = 1, 2, as fi ~ oo while #o does not depend on fl (38) 

Using the definition (1) and (38), it is easy to see that N~f--* Nfas  fl--, oo 
for every cylinder function f .  But then the Tro t t e~Kur tz  approximation 
theorem (Theorem 2.12 in Chapter I of ref. 10) gives that 

S~(T)(~2Io) -> S(T)(~2Io) as fl --> 0o (39) 

Now, combining (35), (37), and (39) and using (38), we conclude that 
if fl is greater than a certain finite fl, then S~(T)(~Io)(~)>O. The 
expression in the left-hand side of the latter inequality equals 
(d2/dt 2) IZ[Io(q~(t; fl))] It= r; thus, the proof of the corollary is completed. 
Among the factors which determine the value of/~, there are the rate of 
convergence in (39) and the lower bound of S(T)(NIo)(~); consequently, 
/~ may depend on the size of G and the choice of C (since #o = exp C). | 

4. CLOSING R E M A R K S  

R1. In the case of an ADP, a sufficient condition for a spin system 
to be ergodic (ref. 10, Chapter III.0) on an arbitrary lattice G acquires the 
following form: maxk=l ...... ( # k _ l - - # k ) < S  1(2+#=), where s : = d e g G  is 
the number of neighbors of each site of the lattice G. With the strong 
inequality being replaced by the weak one, this is exactly (13), a sufficient 
condition for an ADP to possess a density function which is concave for all 
t/>0. Since a sticking process is ergodic, our result shows that there may 
be no deep connection between the ergodicity of an ADP and the concavity 
of its density function. However, the coincidence of their sufficient condi- 
tions is intriguing. 

R2. A sticking process may have a nonconcave density function not 
only on one-dimensional lattices. This fact is substantiated by a computer 
simulation. Our method seems to work for higher dimensions. However, in 
these cases, the right-hand side of (10) would depend on more than five 
events and an attempt to evaluate their probabilities using our method will 
blow up the constructions (18) and (19). As has been mentioned, we intend 
to treat these cases with the assistance of a computer. 

R3. Let (or, t~>0, be an adsorption-desorption process on an 
arbitrary lattice G which corresponds to the following choice of the desorp- 

�9 tion rate: Pk :=A(s-k) ,  k = 0  ..... deg G, for some positive A. Denote by 
e Y" a fully occupied configuration defined by ~ (x) := 1 for all x e G. Then, 
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i t  :=  ~ -  (P,, t>~0, coincides with a contact  process that starts from the 
state "all individuals infected" and the rate of the infection's spread is equal 
to A. The density of the A D P  is then the density of the healthy individuals 
of the corresponding contact  process. Will it be a nonconcave  function of 
time if A is large? Our  method does not  seem to work for the contact  
process. 

R4. Observe that  Z 3 and a tr iangular planar  lattice have the same 
degree, 6, but  are not  isomorphic;  let us loosely say that  they have different 
"geometries." It has been shown in ref. 4 that  an A D P  with the same flip 
rate will have different density functions on these lattices. Will the lattice 
geometry also affect an inflection poin t?  An answer to this question may 
help us to infer the structure of the bonds  between the interacting 
molecules. 
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